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Abstract
Learning to hash has become a crucial technique
for big data analytics. Among existing methods,
supervised learning approaches play an important
role as they can produce compact codes and enable
semantic search. However, the size of an instance-
pairwise similarity matrix used in most supervised
hashing methods is quadratic to the size of labeled
training data, which is very expensive in terms of
space, especially for a large-scale learning prob-
lem. This limitation hinders the full utilization of
labeled instances for learning a more precise hash-
ing model. To overcome this limitation, we pro-
pose a class-wise supervised hashing method that
trains a model based on a class-pairwise similar-
ity matrix, whose size is much smaller than the
instance-pairwise similarity matrix in many appli-
cations. In addition, besides a set of hash func-
tions, our proposed method learns a set of class-
wise code-prototypes with active bits for different
classes. These class-wise code-prototypes can help
to learn more precise compact codes for semantic
information retrieval. Experimental results verify
the superior effectiveness of our proposed method
over other baseline hashing methods.

1 Introduction
The hashing technique has received more and more atten-
tion in large-scale data analytics applications because it can
save storage space by mapping each raw data into a bi-
nary code and enable fast search. Data-independent hash-
ing methods, such as Locality Sensitive Hashing (LSH) [Gio-
nis et al., 1999; Charikar, 2002], require a long-length bi-
nary code to guarantee precision in searching using ap-
proximate nearest neighbor (ANN). In order to produce
a more compact code, data-dependent hashing methods,
known as learning to hash methods [Wang et al., 2016;
2014] have been proposed. Compared to unsupervised hash-
ing methods [Weiss et al., 2008; Liu et al., 2014; 2011;
Gong and Lazebnik, 2011], which do not take label infor-
mation into consideration when learning hash functions, su-
pervised and semi-supervised approaches [Shen et al., 2015;
Wang et al., 2010a; 2010b; Liu et al., 2012a; Pan et al., 2015;

Lin et al., 2014] are more promising as they can encode side
information for semantic search.

For training hashing functions, most existing supervised
and semi-supervised methods [Wang et al., 2010a; 2010b;
Liu et al., 2012a; Pan et al., 2015; Lin et al., 2014] rely
on an instance-pairwise similarity matrix of labeled training
data. The cost in terms of space for generating this ma-
trix is quadratic to the size of the labeled training data. In
a large-scale learning problem, the number of labeled train-
ing instances can be millions or even billions. In this case,
it is impossible to generate a full instance-pairwise similar-
ity matrix for training. As a compromise, sampling tech-
niques are usually adopted to select only a small set of la-
beled instances to compute the similarity matrix while the re-
maining labeled instance are discarded [Liu et al., 2012a] or
used as “unlabeled data” to construct a regularization term
for learning [Wang et al., 2010a; 2010b; Pan et al., 2015;
Lin et al., 2014]. However, this may result in information
loss for learning semantic hashing functions.

To address the issue mentioned above, in this paper, we
propose a class-wise supervised hashing method, which trains
a model based on a class-pairwise similarity matrix rather
than an instance-pairwise similarity matrix. In many appli-
cations, the number of classes is much smaller than that of
training instances. Therefore, the storage space for the sim-
ilarity matrix is dramatically reduced from O(N2) to O(L2),
where N is total number of labeled instance, and L is total
number of classes, which is supposed to be much smaller than
N . With the class-pairwise similarity matrix, besides a set of
hash functions to map original instances to binary codes1, we
also aim to learn a class-wise code-prototype for each class
with “active” bits.

Our idea is motivated by the example shown in Figure 1,
where we are given a set of training instances of four classes:
C1, C2, C3 and C4. The goal is to learn three linear hash
functions in terms of w1, w2 and w3 to map an instance to
a code of three binary bits. Ideally, instances belonging to
the same class are expected to have very similar hash codes,
while instances belonging to different classes are expected
to have very different codes. However, when the number of
classes and data size of each class are both large, one may
not be able to find a perfect set of hash functions over all the

1In this paper, we use +1 and −1 to construct binary codes.
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Figure 1: An motivating example for active hashing functions

classes through optimization. Suppose the optimal solutions
for w1, w2 and w3 are shown in Figure 1(a), where the in-
stances of class C1 are divided by w3 into two areas: A1 and
A2, while the instances of class C2 are divided by w2 into an-
other two areas: A5 and A6. Suppose given a query of class
C1, which falls in area A2, only instances in area A2 will be
turned within Hamming radius 0. If we relax the retrieval
condition to be within Hamming radius 1, all instances of C1

(instances in the both areas A1 and A2) will be returned suc-
cessfully. However, the instances in area A3 of class C3 will
be returned as well. Similar situation applies to the retrieval
problem of class C2.

The problem presented above can be solved by introduc-
ing a concept of active functions/bits to different class-wise
code-prototypes. In the example shown in Figure 1(a), if one
defines w1 and w2 to be active functions and w3 be inactive
for class C1 as shown in Figure 1(b), then given a query of
class C1 that falls in either area A1 or area A2, all instances
in class C1 not the other classes will be returned within Ham-
ming radius 0. The case for class C2 is similar if one defines
w1 andw3 to be the two active functions for class C2 as shown
in Figure 1(c). Note that by introducing active hash functions
to different class-wise code-prototypes, the storage of binary
codes for training instances can be further saved as for each
training instance, one only needs to store those bits that are
“active” in the corresponding class-wise code-prototype. For
example, for the instances in class C1, only the 1st and 2nd
bits are needed to be stored, and the 3rd bit can be discarded.

By summarizing the motivations mentioned above, we
come up with a high-level idea on our hashing model design.
In order to learn a precise and compact hash code for each
instance, we aim to learn a code-prototype for each class,
whose length is the same as the number of hash functions to
be learned. The constructed code for each instance should be
similar to its corresponding class-wise code-prototype. The
class-wise code-prototypes should be able to capture the sim-
ilarity between classes, and are associated with class-specific
active bits such that searching is more effective and efficient.
In the rest of this paper, we denote by Class-wise Supervised
Hashing (CSH) our proposed learning to hash method.

2 Related Work
Our work is related to sparse hashing methods [Xia et al.,
2015; Masci et al., 2013; Zhu et al., 2013; Wu et al., 2014;
Zhang et al., 2016b]. Among these methods, [Zhu et al.,
2013; Wu et al., 2014; Zhang et al., 2016b; 2016a] proposed
to convert sparse coefficients into 0/1 binary code or non-
negative integers, which are used to represent the instances
based on high-level bases or a dictionary. Such kind of sparse
binary codes can be obtained by using 0/1 instead of −1/+ 1
for each bit. In other words, the zero-valued bits in [Zhu et
al., 2013; Wu et al., 2014; Zhang et al., 2016b] are similar
to those of value −1 in our method. We use +1 and −1 to
construct binary code and 0 to indicate sparsity of the code.
Masci et al. [2013] proposed to add sparsity constraints on the
constructed hash codes, while Xia et al. [2015] and Zhang et
al. [2016a] proposed to learn a sparse projection matrix for
hash functions. These two approaches can both help saving
storage space, but to different extents. In general, when the
size of training instances is much larger than that of feature
dimensions, which is common in many real-world applica-
tions, the former approach can save more storage space.

Different from [Masci et al., 2013] to add sparsity con-
straints on the constructed hash codes for individual in-
stances, our proposed method is able to generate sparse bi-
nary codes for labeled training instances through learning a
set of class-wise code-prototypes with active bits for different
classes. In addition, in most previous methods, the L1 norm is
used to induce sparsity, which is a relaxation of the L0 norm,
while in our proposed method, we used the L0 norm to control
the numbers of active bits for each class-wise code-prototype,
and develop an effective algorithm to solve the resultant op-
timization problem. Note that the concept of active bits was
first proposed in [Liu et al., 2012b], where a hash model is
learned by exploring the sparse association between hash bits
and classes. However, it was specially designed for multi-
label classification problems, and fails to be applied to multi-
class classification problems as studied in this paper, where
the co-occurrence information among classes is not available.

3 Methodology
Assume we are given n training labeled instances
{(x1, y1), (x2, y2), ..., (xn, yn)}, where xi ∈ Rd is an in-
put instance, and yi ∈ {1, 2, ..., L} is the corresponding



class label. Without loss of generality, we assume the input
instances to be zero centered, i.e.,

∑n
i=1 xi = 0. A hash

model aims to map each input instance xi to a binary code of
r bits through learning r hash functions as follows,

bi = [h1(xi), h2(xi), ..., hr(xi)]
> = sgn(W>xi), (1)

where each hash function hj(x) is associated with a weight
vector wj ∈ Rr, and W= [w1,w2, ...,wr]∈Rd×r is the hash
projection matrix. The sgn(x) function is an element-wise
sign function defined as sgn(x) = 1 if x ≥ 0, and −1 other-
wise. bi∈{1,−1}r is the resultant r-bit hash code for xi.

3.1 An Overview of the Proposed Method
As discussed in Section 1, previous supervised or semi-
supervised hashing methods aim to enforce the binary codes
to be similar (or different) if the corresponding instances be-
long to the same class (or different classes). One typical
approach is to maximize

∑n
i=1

∑n
j=1 Kijb

>
i bj or minimize∑n

i=1

∑n
j=1

(
Kij − 1

rb
>
i bj

)2
, where K∈Rn×n is the simi-

larity matrix between instances. When n is large, the cost in
terms of both storage and computation is expensive. Though
sampling techniques can be applied to approximate the simi-
larity matrix, some label information may be discarded.

To fully exploit all labeled instances to learn hash functions
and scale up the learning process at the same time, we pro-
pose to learn an additional set of class-wise code-prototypes,
denoted by aj (j = 1, 2, ..., L), based on a class-pairwise sim-
ilarity matrix S ∈ RL×L, where aj is a corresponding r-bit
binary code for class j ∈ {1, 2, ..., L}, and Sjk is positive if
classes j and k are similar, otherwise Sjk is negative. Re-
garding the similarity measure between classes, we can sim-
ply define the similarity between class j and itself to be 1, and
the similarity between different classes to be −1, i.e., Sjk = 1
if j = k, otherwise, Sjk = −1. When the classes lie in a tax-
onomy, we can encode the taxonomy structure to construct
the class-pairwise similarity matrix. Specifically, motivated
by [Weinberger and Chapelle, 2008], we first denote by C
a cost matrix with Cjk ≥ 0 being the length of the short-
est path between class j and class k in the taxonomy, where
j, k ∈ {1, .., L}, and the path is defined to be 0 if j = k. We
then normalize the cost matrix by C̄ = D−1/2CD−1/2, where
Djj =

∑
kCjk is a diagonal matrix. Finally, we define the

similarity S with Sjk = −C̄jk if j 6= k, otherwise, Sjk = 1.
We expect the learned class-wise code-prototypes to have

the following properties:
1. Based on the similarity matrix between classes, simi-

lar classes should have similar code-prototypes, while
dissimilar classes should have different code-prototypes.
This can be done by maximizing

∑L
j=1

∑L
k=1 Sjka

>
j ak

2. Each class-wise code-prototype aj should be able to
guide the learning of hash codes for the instances of
class j. This can be done by maximizing

∑n
i=1 a

>
yibi,

where yi ∈ {1, 2, ..., L} is the corresponding class label
of bi or xi.

3. Each class-wise prototype-code aj should have its spe-
cific active bits. To indicate active or inactive bits, we re-
quire aj to be in {−1,+1, 0}r. The l-th bit in aj is active

if its value is nonsparse, i.e., aj [l] = −1 or aj [l] = +1,
otherwise, inactive.

3.2 Objective Function
By formulating our high-level ideas described above, we
come up with the following objective function,

max
W,bi,aj

n∑
i=1

a>yibi+α
L∑
j=1

L∑
k=1

Sjka
>
j ak−

β

2

n∑
i=1

∥∥∥bi−W>xi
∥∥∥2
2
,

s.t. bi ∈ {1,−1}r, aj ∈ {1, 0,−1}r, ‖aj‖0 ≤ m. (2)

where bi is a binary code for xi, i = 1, ..., n, while aj is
a sparse class-wise code-prototype for class j ∈ {1, ..., L},
ayi is the corresponding class-wise code-prototype of xi, S is
the class-pairwise similarity matrix, W is the hash projection
matrix, α and β are positive tradeoff parameters, ‖ · ‖0 is the
zero-norm that returns the number of nonsparse elements, and
m is the parameter controlling the sparsity of each aj .

In the objective of (2), the first term is to enforce ayi and bi
to be close to each other. The second term is to ensure that if
classes j and k are similar (or dissimilar), the corresponding
class-wise code-prototypes aj and ak are similar (or dissimi-
lar). The third term is the negative of a loss function on binary
fitting errors, which is commonly used in many learning to
hash methods [Gong and Lazebnik, 2011; Shen et al., 2015;
Pan et al., 2015; Xia et al., 2015]. The constraint ‖aj‖0 ≤ m
is to enforce each aj to be of at most m active bits.

4 Optimization
To find a feasible solution for the optimization problem (2), in
this section, we present an alternating optimization approach.

4.1 W-Step: fix bi and aj , update W
By fixing bi and aj , the optimization problem (2) becomes

min
W

n∑
i=1

∥∥∥bi −W>xi

∥∥∥2
2
. (3)

By defining X = [x1,x2, ...,xn] and B = [b1,b2, ...,bn], the
optimization problem (3) can be further rewritten as a regres-
sion problem

min
W

∥∥∥B−W>X
∥∥∥2
F
,

for which we have the solution,
W = (XX>)−1XB>. (4)

4.2 B-Step: fix W and aj , update bi

By fixing W and aj , which means ayi is fixed for each xi, and
defining a matrix Â ∈ {1, 0,−1}r×n with the i-th column cor-
responding to the class prototype ayi of xi, the optimization
problem (2) can be reformulated as

max
B

Q(B) (5)

s.t. B ∈ {1,−1}r×n,

where Q(B) = tr(Â>B) − β
2

∥∥∥B−W>X
∥∥∥2
F

. To solve this
optimization problem, we further rewrite Q(B) as follows,

Q(B) = tr(Â>B)− β

2

(
‖B‖2F + ‖W>X‖2F − 2tr(X>WB)

)
.



Since ‖B‖2F and ‖W>X‖2F are both constant,

Q(B) = tr(Â>B) + βtr(X>WB) + const

= tr(V>B) + const, (6)
where V = Â + βW>X. Maximizing Q(B) is equivalent
to maximizing tr(V>B). As B ∈ {1,−1}r×n, the optimal
solution for (5) can be obtained by setting

B = sgn(Â + βW>X). (7)

4.3 A-Step: fix W and bi, update aj
Finally, by fixing W and bi, the optimization problem (2) can
be rewritten as follows,

max
aj

n∑
i=1

a>yibi + α

L∑
j=1

L∑
k=1

Sjka
>
j ak, (8)

s.t. aj ∈ {1, 0,−1}r, ‖aj‖0 ≤ m.
Note that the expression ayi is not consistent with aj . Thus,
we need to transform it to aj for convenience in solution in-
duction. To do this, we define b̃j as the sum of bi’s which
belong the j-th class, i.e., b̃j =

∑
i∈C bi, where C = {i|yi =

j & i = 1, 2, ..., n}. Then (8) can be rewritten as

max
aj

L∑
j=1

a>j b̃j + α

L∑
j=1

L∑
k=1

Sjka
>
j ak, (9)

s.t. aj ∈ {1, 0,−1}r, ‖aj‖0 ≤ m.
However, the optimization problem (9) is still difficult to opti-
mize because both the zero-norm constraint (or sparsity con-
straint) and the discrete constraint on aj are not differen-
tiable. Furthermore, the second term of the objective in (8)
is a quadratic term with respect to aj , making it difficult to
obtain solutions for all aj at the same time by using the opti-
mization method used in (5).

Alternatively, we propose an algorithm to update only
one aj at each time. To avoid confusion, we denoted by
at the one to be optimized at each time, and aj , where
j 6= t, any one of the remaining constant vectors. Let s̃
be a column vector corresponding to the t-th row of S ex-
cept for Stt, i.e., s̃ = [St1,St2, ...,St,t−1,St,t+1, ...,StL]>,
Ã = [a1,a2, ...,at−1,at+1, ...,aL], and K = {1, 2, ..., L} \ {t}.
When all {aj}’s except for at are fixed, we can derive that

L∑
j=1

a>j b̃j = a>t b̃t + const = b̃>t at + const, (10)

and
L∑
j=1

L∑
k=1

Sjka
>
j ak

=
∑
j∈K

∑
k∈K

Sjka
>
j ak +

∑
j∈K

Sjta
>
j at +

∑
j∈K

Stja
>
t aj + Stta

>
t at

= 2s̃>Ã>at + Stta
>
t at + const. (11)

By substituting (10) and (11) into (9), we obtain the optimiza-
tion problem with respect to at as follows,

max
at

b̃>t at + 2αs̃>Ã>at + αStta
>
t at (12)

s.t. at ∈ {1, 0,−1}r, ‖at‖0 ≤ m.

Proposition 1. To solve the maximization problem (12), the
number of non-zero elements of at should be maximal. In
other words, ‖at‖0 = m.

Proof. Define a feasible solution for (12) as ap, where
‖ap‖0 = v ≤ m − 1, and another feasible solution as aq ,
where ‖aq‖0 = v + 1. Assume that these two solutions or
vectors are different only on the l-th element, where ap[l] = 0

and aq [l] 6= 0. Let Z(a) = b̃>t a + 2αs̃>Ã>a + αStta
>a, and

u = b̃t + 2αÃs̃. Then we have

Z(aq)−Z(ap) = u[l](aq [l] − ap[l]) + v+ 1− v = u[l]aq [l] + 1.

If aq [l] = sgn(u[l]), then Z(aq) − Z(ap) > 1. This means
that for any feasible solution ap whose zero norm is less than
m, we can always find another feasible solution aq such that
Z(aq) > Z(ap). Therefore, the optimal solution for (12) is
not ap but the one whose zero norm equals to m.

With Proposition 1, the third term of the objective in (12)
equals to a constant α × m. Thus, the objective becomes to
maximize b̃>t at+ 2αs̃>Ã>at or u>at by using the definition
of u. It can be shown that the optimal solution is

at[l] =

{
sgn(u[l]), if |u[l]| ≥ η,
0, otherwise, (13)

where |u[l]| denotes the absolute value of u[l], and η is the
m-th largest absolute value of the elements of u. We can use
(13) to obtain solutions for all {aj}’s.

Note that for initialization, we set each class-wise code-
prototype aj to be a vector of all zeros. To accelerate the con-
vergence, we initialize the projection matrix W using random
sampling from a uniform distribution E(0) as used in LSH.

4.4 Search in Sparse Binary Codes
As discussed in previous sections, the binary codes for in-
stances, {bi}’s, are not constrained to be sparse in training,
while the class-wise code-prototypes, {aj}’s, are learned with
sparsity constraints. After {aj}’s are learned, for any binary
code bi of xi in the database, if its label is known, we can
convert it into a sparse version by setting its inactive bits to 0
based on its corresponding class-wise code-prototype ayi .

Note that for search on a database of n non-sparse binary
codes of r bits within Hamming radius R, it needs to go
through all the hash buckets within R bits of the query bi-
nary code [Norouzi et al., 2012]. The number of buckets to
be examined is

∑R
i=0

(r
i

)
, and therefore this costs O(r!R!) . In

our proposed method, as for each instance, only m active bits
needs to be considered, the time complexity for R Hamming
radius neighbors search is O(m!R!). If R is not zero, the ac-
tive bits strategy used in the proposed method will save much
retrieval time.

5 Experiment
The datasets we employ to test the performance of the pro-
posed CSH method include the Animals with Attributes
dataset2 (AwA) and the CIFAR-100 dataset [Krizhevsky,

2http://attributes.kyb.tuebingen.mpg.de/



2009]. AwA consists of 30,475 images of 50 classes of ani-
mals, which provides six kinds of pre-extracted feature repre-
sentations. In our experiments, we use the 4096-dimensional
DECAF features, which are obtained via a 7-layer CaffeNet.
There is no taxonomy information among classes. However,
as all classes are mammal animals, we use part of the Mam-
mals subtrees of WordNet as the taxonomy to construct the
class-pairwise similarity matrix. On this dataset, 5% of data
(i.e. 1, 457 instances) are randomly picked up as queries, and
the remained instances form a training set. CIFAR-100 con-
sists of 100 classes with each class containing 600 color im-
ages of size 32× 32, which results in 60K images in total. In
experiments, every image is represented by 512-dimensional
GIST features. And 58K instances are randomly selected
from the whole set to comprise a training set while the re-
mained 2K instances are used as queries. As only 2-layer
taxonomy is provided, in our experiment, we do not encode
the taxonomy information into the the similarity matrix for
this dataset.

5.1 Methods for Comparison

We compare our proposed CSH method with four
hashing methods. They are Locality-Sensitive Hash-
ing (LSH) [Charikar, 2002], Iterative Quantization
(ITQ) [Gong and Lazebnik, 2011], Supervised Discrete
Hashing (SDH) [Shen et al., 2015] and Supervised Hashing
with Kernel (KSH) [Liu et al., 2012a]. The model of LSH
is obtained through random sampling. Its performance
is guaranteed by probability theory. ITQ is an unsuper-
vised learning method, whose promising performance has
been shown compared with other unsupervised hashing
algorithms. Therefore, we consider it as a representative
for unsupervised hashing. SDH is a recently proposed
supervised hashing with a discrete constraint. The discrete
constraint is also used in CSH. Though SDH is designed for
binary classification, it has shown its effectiveness in ANN
search. Moreover, the optimization approach used in SDH is
similar to ours. Hence, we choose it as a comparison method.
KSH is a famous supervised hashing method based on an
instance-pairwise similarity matrix. As the out-of-space
issue caused by KSH is the one we aim address in this paper.
Therefore, we choose KSH for conducting comparison
experiments as well.

5.2 Experimental Setup

In the optimization problem (2) for CSH, there are three pa-
rameter α, β and m. The tradeoff parameters α and β are
to balance the impact of three terms in the objective. The
first term is to sum up n items, the second term is to sum up
L×L items, and the third term is to sum up n items. Sup-
pose each item be equally important in the objective. We set
α = n/L2 and β = n/n = 1. Regarding the sparsity parame-
ter m, we set m= 3

4r, where r is the code length. Sensitivity
study on different degree of sparsity is also conducted through
experiments. For initialization on W in CSH, we adopt the
same strategy as LSH. To avoid bias in initialization, we run
CSH and LSH 10 times with different random initializations
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Figure 2: mAP v.s. code length.

on W3, and report the averaged results.
Regarding other comparison methods, as “anchors” are re-

quired for both SDH and KSH. To avoid bias in anchors se-
lection, we randomly sample 10 different anchor sets from the
training data, each of which consists of 1, 000 anchors. We
run SDH and KSH with the 10 anchor sets, and report the av-
eraged results. In addition, though it has been shown that with
only 5% of training data, KSH can still perform well [Liu et
al., 2012a], in our experiments, we feed KSH as many train-
ing instances as possible for generating the similarity matrix
to maximize its performance in terms of search quality. With
the computational resources we have, we can generate an
instance-pairwise similarity matrix of around 30K instances.
Therefore, for KSH, we use all training instances of AwA and
30K training instances of CIFAR-100. Other parameters for
the comparison methods are set based on the suggested values
reported in the original papers.

5.3 Evaluation Criteria
The mean Average Precision (mAP) is the most popular eval-
uation criterion for hashing methods [Wang et al., 2010b;
Liu et al., 2012a; 2014; Wang et al., 2010a; Gong and Lazeb-
nik, 2011; Shen et al., 2015; Xia et al., 2015; Wu et al.,
2013]. Therefore, we adopt it as one of evaluation criteria.
However, we find that with binary representations, a lot of
instances may have the same Hamming distance to a given
query, and thus have the same ranking positions. In this case,
mAP scores may be misleading. Therefore, we also use the
precision and recall curve within different Hamming radii to
a given query to evaluate the hashing performance.

5.4 Comparison Results
We first compare CSH with the other four hashing methods
in terms of mAP in Figure 2. Clearly, CSH outperforms the
other baselines with different code lengths on AwA as shown
in Figure 2(a). We observe that the three supervised hash-
ing methods, CSH, SDH, and KSH, perform better than the
unsupervised methods, ITQ and LSH. This indicate the im-
portance of supervised information for semantic search. Note
that CSH without encoding class taxonomy information is
also tested on AwA by setting all diagonal entries of the sim-
ilarity matrix S to be +1, and all the other entries to be −1,
which is denoted by CSH0 in the figure. The result reveals
that CSH can outperform all other competitors, no matter su-
pervised or unsupervised ones, even without engaging the

3In each run, CSH and LSH share the same initialized W.
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Figure 3: Precision v.s. Recall.

class taxonomy into learning. The performance of CSH is
slightly better than CSH0, which implies that encoding class
taxonomy can help to generate a more precise class-pairwise
similarity matrix, and thus improve search quality.

We also find that the results on CIFAR-100 in terms of
mAP are misleading. To be specific, in Figure 2(b), the mAP
scores achieved by all the hashing methods are much lower
than those shown in Figure 2(a). This implies that learning
hash functions on CIFAR-100 is much difficult than that on
AwA. In this case, the code of small length, e.g., code of 16
bits, is supposed to perform poor. However, from the figure,
the hashing functions with the smallest code length perform
best. This is because for a difficult task, with small length of
code, a lot of binary codes have the same Hamming distance
to a given query. In this case, mAP scores are not reliable.

Therefore, we generate the precision-recall curve in Fig-
ure 3, where the code length is of 64 bits, and the precision
and recall within Hamming radius 2 (PH2 and RH2) are high-
lighted using circles. In general, the performance is consid-
ered to be better if the area under the precision-recall curve
is larger. Apparently, CSH performs best on both AwA and
CIFAR-100 in terms of the area under the precision-recall
curve. Note that the precision-recall curve shown in Figure 3
is quite different from that for information retrieval or clas-
sification problems, where the precision would be very high
when the recall is close to zero. Here, the precision is low
when the recall is close to zero. This phenomenon is rea-
sonable in hashing methods because the Hamming distance
between the query and a retrieved instance is discrete, result-
ing in lots of retrieved instances having the same ranking po-
sition. If no retrieved instances have the same code as the
query, both the precision and recall are zero, which is the
case for LSH and ITQ in our experiments. When retrieved
instances have the same code as the query, as some of them
may belong to a different class from the query, the precision
may not be high, which is the case for KSH, SDH and CSH.

More specifically, as can be seen from results on AwA
shown in Figure 3(a), the precision-recall curve of CSH cov-
ers largest area. The ranking of the five comparison methods
in terms of the area under precision-recall curve is the same as
that in terms of mAP. Furthermore, PH2 and RH2 of CSH are
much better than the other four methods. From the results on
CIFAR-100 shown in Figure 3(b), the precision-recall curve
of CSH also covers largest area. Though the precision of KSH
is better than CSH when the recall is very low, the gap is not
large. Moreover, PH2 and RH2 of CSH are much better than
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those of the other methods. Except for CSH, RH2s of the
other four methods are very close to zero, which means that
the codes generated by the these methods on CIFAR-100 are
not as compact as CSH. This therefore proves the effective-
ness of sparse binary codes constructed by CSH.

5.5 Convergence and Effect of Sparsity Parameter
We also conduct experiments on convergence analysis and
impact study on the sparsity degree of each ai for CSH. The
experiments are done on AwA with the code length fixed to
be 64 bits. The convergence analysis on the projection matrix
W and the class-wise code-prototypes matrix A is shown in
Figure 4(a), where the y axis is the difference in Frobenius
norm between two successive iterations. As can be seen from
the figure, A converges within 5 iterations, and W begins to
converge after 10 iterations, and stays unchanged after 40 iter-
ations. The impact of the sparsity degree on each ai, i.e., the
value of m in (2), to the final hashing performance is shown
in Figure 4(b), where m varies from 8 to 64 with 8 increment
each step. From the figure, we observe that when m is very
small, such as m = 8 and m = 16, the mAP score is compar-
atively low because the number of the active bits may not be
sufficient enough to capture important information. When m
becomes larger, such as m = 56 or m = 64, the mAP scores
drop as most binary codes become “active”. This reveals the
importance of inactivating a certain number of bits to improve
the performance, which is illustrated by Figure 1. These ex-
perimental results suggest us to choose the value of m in the
range of [ 38r,

3
4r], where r is the length of a code.

6 Conclusion
In this paper we propose a novel class-wise supervised hash-
ing method, denoted by CSH. Instead of using an instance-
pairwise similarity matrix, CSH is based on a class-pairwise
similarity matrix. With the class-pairwise similarity matrix,
a set of class-wise code-prototypes with class-specific active
binary bits are introduced to help generating more compact
hashing functions, and thus enable more effective and effi-
cient search. Experimental results verify the superiority of
CSH in terms of search quality and storage space over other
baseline hashing methods.
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